Representing molecule-surface interactions with symmetry-adapted neural networks.

نویسندگان

  • Jörg Behler
  • Sönke Lorenz
  • Karsten Reuter
چکیده

The accurate description of molecule-surface interactions requires a detailed knowledge of the underlying potential-energy surface (PES). Recently, neural networks (NNs) have been shown to be an efficient technique to accurately interpolate the PES information provided for a set of molecular configurations, e.g., by first-principles calculations. Here, we further develop this approach by building the NN on a new type of symmetry functions, which allows to take the symmetry of the surface exactly into account. The accuracy and efficiency of such symmetry-adapted NNs is illustrated by the application to a six-dimensional PES describing the interaction of oxygen molecules with the Al(111) surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial neural networks, genetic algorithm and response surface methods: The energy consumption of food and beverage industries in Iran

In this study, the energy consumption in the food and beverage industries of Iran was investigated. The energy consumption in this sector was modeled using artificial neural network (ANN), response surface methodology (RSM) and genetic algorithm (GA). First, the input data to the model were calculated according to the statistical source, balance-sheets and the method proposed in this paper. It ...

متن کامل

6 S ep 2 00 1 Hierarchical Self - Programming in Recurrent Neural Networks

We study self-programming in recurrent neural networks where both neurons (the 'processors') and synaptic interactions ('the programme') evolve in time simultaneously, according to specific coupled stochastic equations. The interactions are divided into a hierarchy of L groups with adiabatically separated and monotonically increasing timescales , representing sub-routines of the system programm...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Hierarchical self-programming in recurrent neural networks

We study self-programming in recurrent neural networks where both neurons (the ‘processors’) and synaptic interactions (‘the programme’) evolve in time simultaneously, according to specific coupled stochastic equations. The interactions are divided into a hierarchy of L groups with adiabatically separated and monotonically increasing time-scales, representing sub-routines of the system programm...

متن کامل

Performance of a fully close-coupled wave packet method for the H21LiF(001) model problem

We have investigated the performance of a fully close-coupled wave packet method and its symmetry-adapted version for a model problem of H2 scattering from LiF~001!. The computational cost of the fully close-coupled methods scales linearly with the number of rotation-diffraction states present in the basis set, provided that the sparseness of the potential coupling matrix is taken into account....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 1  شماره 

صفحات  -

تاریخ انتشار 2007